Printed Pa		ject Code:- BMCA0201 l. No:					
NOII	DA INSTITUTE OF ENGINEERING AND (An Autonomous Institute Affiliat MCA	TECHNOLOGY, GREATER NOIDA					
	SEM: II - THEORY EXAMINATION (2023 - 2024)						
	Subject: Computer System	,					
Time: 3		Max. Marks: 100					
	nstructions: ify that you have received the question paper	with the correct course code branch atc					
	uestion paper comprises of three Sections -A						
-	s (MCQ's) & Subjective type questions.	, , , , , , , , , , , , , , , , , , ,					
	num marks for each question are indicated on	-					
	te your answers with neat sketches wherever	necessary.					
	e suitable data if necessary. ably, write the answers in sequential order.						
	et should be left blank. Any written material	after a blank sheet will not be					
evaluated/	· · · · · · · · · · · · · · · · · · ·	W 0.111.11 0.11 0.11 0.11 0.11 0.11 0.11					
SECTION	<u>N-A</u>	20					
1. Attemp	ot all parts:-						
1-a.	The base/radix for a decimal number is:	CO1 1					
(a)) 16						
(b)) 9						
(c)) 10						
(d)) 2						
1-b.	POS terms are known as: CO1	1					
(a)) Minterm						
(b)) Maxterm						
(c)) Midterm						
(d)) Modterm						
1-c.	The register is a type of	CO2 1					
(a)) Combinational circuit						
(b)) Sequential circuit						
(c)) CPU						
(d)) None						
1-d.	SRAM is also known as: CO2	1					
(a)) MRAM						
(b)	DRAM						
(c)) MMRAM						

	(d)	Cache	
1-e.	W	Which type of control unit is faster? CO3	1
	(a)	Micro-programmed	
	(b)	Hardwired	
	(c)	Horizontal Micro-programmed	
	(d)	Vertical Micro-programmed	
1-f.	\mathbf{N}	Sicroprogrammed controller are better for which architecture-	1
	(a)	RISC	
	(b)	RESC	
	(c)	CISC	
	(d)	CIISC	
1-g.	N	fature of ROM is: CO4	1
	(a)	Volatile	
	(b)	Non-Volatile	
	(c)	Versatile	
	(d)	Volatile and versatile	
1-h.	W	Which of the following is the fastest means of memory access for CPU?	1
	C	O4	
	(a)	Register	
	(b)	Cache	
	(c)	Main memory	
	(d)	Secondary memory	
1-i.		he method which offers higher speeds of I/O transfers is	1
		O5	
	(a)	Interrupts Mamory manning	
	(b)	Memory mapping Program controlled I/O	
	(c) (d)	Program-controlled I/O DMA	
1;	` ′	he method that is used to transfer information between internal storage and	1
1-j.		external I/O devices is known as-	1
	(a)	I/O interface	
	(b)	I/O Interrupt	
	(c)	I/O processor	
	(d)	None	
2. Att	empt a	all parts:-	
2.a.	D	Define the term Computer Architecture. CO1	2
2.b.		Define Register. CO2	2
2.c.		That is micro instruction? CO3	2

2.d.	Define set associative mapping? CO4	2		
2.e.	Define synchronous communication. CO5	2		
SECTION	ON-B	30		
3. Answ	er any <u>five</u> of the following:-			
3-a.	Explain Excess-3 and BCD code. CO1	6		
3-b.	Draw the truth table and circuit diagram of AND, OR, NOT gates. CO1	6		
3-c.	Define microoperations with proper examples? CO2	6		
3-d.	Explain full adder using truth table. CO2	6		
3.e.	Explain addressing modes, its usage and types. CO3	6		
3.f.	Briefly explain Primary storage and secondary storage with suitable examples. CO4	6		
3.g.	Explain interrupt and its types? CO5	6		
SECTION	ON-C	50		
4. Answer any <u>one</u> of the following:-				
4-a.	Explain Boolean Laws with example. CO1	10		
4-b.	Simplify the following expressions using Boolean algebra a) AB + A(CD +CD') b) (A'BC+AB'C+ABC'+ABC) CO1	10		
5. Answ	er any one of the following:-			
5-a.	Construct a 16-bit common bus architecture. CO2	10		
5-b.	Explain: a)Register b)RTL c)Symbol Table of Register CO2	10		
6. Answer any <u>one</u> of the following:-				
6-a.	Explain general register organization and explain the functionality of each component. CO3	10		
6-b.	Explain stack organization with register and memory referencing. CO3	10		
7. Answer any <u>one</u> of the following:-				
7-a.	Construct the block diagram of RAM along with its working and truth table. CO4	10		
7-b.	Construct pyramid structure of memory hierarchy, explain each term. CO4	10		
8. Answer any <u>one</u> of the following:-				
8-a.	Explain with the block diagram the DMA transfer in a computer system. CO5	10		
8-b.	Compare software and hardware interrupts. CO5	10		